From Smart Metering to Smart Grids: PLC Technology evolutions

Alessandro Moscatelli
STMicroelectronics
Milan- ITALY

ISPLC 2011
Udine, 5th April 2011
• From Smart Metering to Smart Grid
• Smart Grid drivers and PLC technologies
• PLC Implementation Examples
• Conclusions
From Smart Metering to Smart Grid

Energy World
- Electronic Meters

ICT World
- Comm. networking

Smart Metering: the natural backbone of Smart Grids

Smart Grid
- Smart Metering
Smart Grid Scenario

Home Area Network(s)

- High Speed connectivity
- Low Speed connectivity

Utility / AMI

Service Providers / Internet

BB Access

Vehicle to Grid

NB Utility Access
Smart Metering market

- Research reports estimate close to **250M installed smart meters by 2015**

- **Europe and North America** are leading with Asia growing fast

- **PLC is the most adopted communication** technology in Smart Meters: 60% share

Source: ABI Research 2010
OUTLINE

• From Smart Metering to Smart Grid
• Smart Grid drivers and PLC technologies
• Implementation Examples
• Conclusions
Smart Grid driving forces in EU:
EU mandates/directives & National regulations on Smart Metering first

EU Directives on climate change and smart meters deployments
• 2008 EU policy package: 20/20/20 objectives
• 2009 EU 3rd Energy Package: 80% smart meters coverage across all members by 2020
• 2009, M/441 to standardize an open architecture for Utility meters → OPEN METER project

EU Directives on metering and energy consumption functional requirements
• 2004/22/EC on measuring instruments
• 2006/32/EC on energy end-use efficiency and energy services

National regulations on smart metering penetration
• ITALY & SWEDEN → 100% roll out completed
• SPAIN → Royal Decree RD-1110 for 100% Smart metering roll out by 2018
• UK → New legislation (2009) defining 47million smart gas and electricity meters roll out by 2020
• FINLAND → New legislation (66/2009) for full smart metering penetration by 2014....
The OPEN METER Project is an official initiative of EU Commission 7th Framework Programme (Topic Energy.2008.7.1.1) which responds to the EU Mandate 441 for the definition of an Open Access Standard for Smart Multi-Metering Services.
OPEN METER Architecture & technologies

Selected PLC open technologies
- S-FSK profile (IEC61334-5-1)
- N-PSK profile (Meters&More)
- OFDM profiles (PRIME/G3)

Relevant related Industrial associations:

- DLMS
- Meters and More
- PRIME Alliance
The two founding members of the association are Enel Distribuzione and Endesa Distribución Eléctrica.

World leading companies from different business sectors have already joined the Association:

- Technology Providers
- DSO
- System Integrators
- Test and Validation Service Providers

Involved and interested members play different roles in the market:
- Meters and More open specifications have been defined as an evolution of the Enel Telegestore protocol specifications

- Meters and More application protocol has already been successfully operated on several modulation schemes, including FSK and BPSK

- Efficient, robust and safe communication.
 - Optimization of communication paths.
 - Very short messages, optimized for narrowband powerline communications.
 - Includes Encryption and authentication (128 bit AES)

- The new supported modulation scheme for the powerline communications is N-PSK with data rates ranging from high speed 8PSK uncoded mode at 28.8 kbps to high robust BPSK coded mode at 4.8 kbps

- Proven on more than 50 Million installations (Italy, Spain, Malta, Brazil..)
PRIME Alliance History

- **October 2007:**
 - IBERDROLA and few Industrial partners and R&D centers start working on the concept

- **May 2009**
 - PRIME alliance is officially launched including 8 principle members

- **October 2009**
 - PRIME Alliance proves successful multi-Vendor Interoperability

- **October 2010**
 - First Meter manufacturers pass official compliance tests by recognized independent third parties and are deployed on field (100k meters pilot)

- **April 2011**
 - PRIME Alliance reaches more than 30 members worldwide
PRIME Technology & Alliance

- Open technology
- Robust and performing
 - OFDM up to 128kbps
 - n-PSK modulated subcarriers
 - Optional robust coded modes
 - 128-bit AES encryption
- Plug & Play
- Suitable for DLMS/COSEM and TCP/IP standards implementations
- Supported by multiple suppliers and stakeholders worldwide (silicon makers, meter manufacturers, utilities, technology providers,)
- Interoperable solutions available
- Big deployment started
- Approved profile/annex in IEEE and ITU NB OFDM PLC standardization groups

http://www.prime-alliance.org/
IEEE P1901.2

- Target features
 - 0 - 500 kHz frequency band, OFDM based
 - Up to 500kbps speed range
 - Communication over either LV or MV networks
 - Internet (IP) networking: IPv6 support
 - Coexistence with legacy single carrier technologies
 - PRIME and G3 profiles in CENELEC A band

- The IEEE P1901.2 Working Group has started the development of the standard in April of 2010 and expects to complete the work this year/beginning 2012

- IEEE P1901.2 Working Group is a collaborative effort driven by the industry:

- HomePlug Alliance is sponsoring this standard for access and is developing the certification program for interoperability and compliance
American Recovery (ARRA) Stimulus:

- Smart Grid demo projects ($4.5B)
- Energy Efficiency and Conservation Block Grant ($3.2B)
- Transportation, including electric vehicles ($1.7B)

“The smart grid is an instant replay of the Internet”

- Cisco CEO John Chambers

… but sometimes some barriers to Smart Grid deployments still remain:

- Energy management is not top of people mind, respect to consumer electronics
- Energy prices are still quite low in North America to commit customers to “energy efficiency”
- Security & Privacy is a concern
Expanding the Green Ecosystem in the Home: the “Quad Play” convergence opportunity

- The “triple play”, i.e., the convergence of all media (voice, video, data) into the home, provided by a single vendor, and streamed to a variety of consumer devices (phones, TVs, computers, and more) is today a reality.

- By integrating “Home energy management systems” (HEMS) to feature-rich “triple-play” devices may enable wide smart grid functionalities penetration into the home.
HomePlug fast facts

- Mission: to create specifications and certification programs for using the power lines for broadband home networking and Smart Grid
- HomePlug works to accelerate worldwide PLC adoption
 - Promotion and market development; user education programs
 - Certification logo: compliance and interoperability testing
 - Formal liaison agreements with complementary key RF industry groups such as ZigBee and Wi-Fi
- Entity membership and support for key IEEE standards
 - 1901 -- broadband-speed powerline (standard published)
 - 1901.2 -- low-frequency, narrow-band powerline
 - 1905.1 -- convergent digital home network for heterogeneous technologies
- Estimated cumulative shipments: 65 million HomePlug devices
HomePlug: one of the largest industry group dedicated to powerline networking

Sponsor Members

8 companies

Adopter Members: 30 additional companies
HomePlug GP ("Green PHY")

- **Principle applications**
 - Monitor and control devices via low speed, low cost powerline communications:
 - Smart Energy: demand response, load control, energy efficiency
 - Home/Building Automation

- **Target features**
 - Extremely robust and reliable
 - **interoperable** with HomePlug AV and IEEE 1901, but
 - lower power consumption (- 75% target), lower cost
 - Internet (IP) networking: 802.2, IPv6 support
 - minimum 1 Mbps effective data rate (3.8 Mbps peak PHY rate)
 - Support for firmware updates

- Specification ratified and released in June-2010
HomePlug Smart Grid Solutions

- Solar Panels
- Light Switches
- Security Cameras
- Home Gateway
- HPGP
- HPAV
- Thermostats
- Automotive
- Charging Station
- Appliances
- Consumer Electronics
- Authentication Server
- Smart Energy / HAN
- Customer Premises
- Smart Meter / WAN
- Utility Backhaul
- Controlled Port
- Utility Network
Smart Grid PLC standards by application domain
Possible scenario summary

Access Domain (Advanced Metering Infrastructure)
- Consolidated
 - Open Meter NB PLC
 - IEEE P1901.2
 - In development

Home Domain (Home Area Network)
- HomePlug GP
- Home Plug AV/P1901

Electric Vehicle Domain (Vehicle 2 Grid)
- HomePlug GP
- Home Plug AV/P1901
OUTLINE

• From Smart Metering to Smart Grid
• Smart Grid drivers and PLC technologies
• Implementation Examples
• Conclusions
Typical PLC node partitioning

- Not flexible, proprietary protocol (if HW PLM)
- Not PLC specialized, expensive and power consuming (if DSP PLM)
- High Bill of Material
- Large and expensive PLC node
PLC node partitioning based on SoC approach

Best trade-off among integration level, PLC specialized solution, flexibility, performances and cost
NB PLC SoC implementation ("STarGRID" Platform)

- Scalable pin-to-pin compatible solutions
- Programmable DSP for multiple modulations
- 8-bit core for multiple protocols management
- Suitable for CENELEC A, B, C, D bands
- Integrated Power Amplifier
- AES Encryption
- Lowest BOM

STMicroelectronics
BB PLC SoC Implementation (HomePlug) for “Quad Play” applications (Home Area Network)

- MCU for protocol/application processor
- Dedicated Engine for Home Plug standards:
 - HomePlug GP
 - HomePlug 1.0
 - HomePlu AV
- Multiple connectivity peripherals
- Embedded AFE
• Smart Metering is the fundamental step towards Smart Grids

• PLC is becoming one of the preferred communication technologies for Smart Grids

• OPEN METER and HOMEPLUG technologies are today by the facto Smart Grid PLC standards

• SoC design allows flexible and cost effective PLC node implementations for widest adoption in all Smart Grid domains
Thank You

- alessandro.moscatelli@st.com
- www.st.com/powerline
- www.st.com/metering